

2017العربي الـ 17و المعرض الدولي للحديد و الصلب17th Arab Steel Summit
and International Iron and Steel Exhibition

Optimal design of round-oval-round roll pass

elmarakbysteel

MKF elmarakbysteel

Optimal design of round-oval-round roll pass

Eng. Mostafa Rashad Rolling mill plant manager R & D manager

Bar Rolling Process

MC elmarakbysteel

Bar Rolling Process

Intensive energy consumption process

One machine/day

House for 6 months to 1 year

MC elmarakby steel

Bar Rolling Process

What does the optimum roll pass design mean?

(Optimal minimum rolling torque)

Minimum machine size and energy consumption Reducing the running cost

(Optimal maximum area reduction ratio) Minimum machine quantity

Reducing the CAPEX cost

Smaller Fewer

Study Objectives

Optimization Problem Objectives

Minimizing rolling torque

Maximizing area reduction ratio

Rolling pass sequence

Round-Oval-Round Pass

Probable Ovals

Required perfect shape

InputIntermediateOutputRoundOvalRound

MC elmarakbysteel

Round-Oval-Round Pass

Feasible Ovals

MKF elmarakbysteel

Round-Oval-Round Pass

Optimal Oval

MC elmarakbysteel

Optimization Problem Formulation

Objectives

- Minimizing the rolling torque
- Maximizing the area reduction ratio

Constraints

Over fill

Design Parameters Oval geometry Radius Depth

MC elmarakbysteel

reinforcing life.

Underfill

Bite angle

Accurate Rolling Process Modelling

How to calculate the rolling parameters according to the design variables

Finding the Optimal Solution Optimal Oval Shape

How do we find the optimal solutions when so many solutions

MCF elmarakbysteel

Accurate Rolling Process Modelling

- Mathematical models are not available
 - Complicated process
 - Many process parameters
- Old empirical methods yield high margin of error
- Trial and error is so expensive
- Finite element modeling

ME elmarakbysteel

reinforcing life.

Optimal Oval

Accurate Rolling Process Modelling

• Finite element modeling

Two Step solution:

- 1. Finite element
- 2. Verification

•

Accurate Rolling Process Modelling

Finite Element

Abaqus Finite Element

Step

Finite Element

- Abaqus Finite Element
 - •Rolling FEM
 - Round-Oval
 - Oval-Round

Temperature

Chemical Composition

Accurate Rolling

Process Modelling

Stress Strain curve & Strain Rate Effect

Accurate Rolling Process Modelling

Finite Element

- Abaqus Finite Element
- Rolling FEM
 - Round-Oval
 - Oval-Round

Accurate Rolling Process Modelling

Finite Element

- Abaqus Finite Element
- Rolling FEM
 - Round-Oval
 - Oval-Round

Verification of FE

Accurate Rolling Process Modelling

ME elmarakbysteel

Experimental verification on the MKS rolling millSix experimental trials

Verification of FE

Accurate Rolling Process Modelling

• Six Experimental trial

Results comparison

Verification of FE

Accurate Rolling Process Modelling

- Actual experiment
 - Six Experimental trial
- Results comparison

Less than **1.5%** error in **Reduction ratio**

Less than **0.1%** error in Area

Less than 0.5% error in Torque

Optimal Solution Optimal Oval Shape

MCF elmarakbysteel

Optimal Oval

If the two passes are solved simultaneously, we can get the total optimal solution

Optimal Oval

• Required so many trials

Optimal Oval

We Used data analysis and regression tools to get **META-MODEL** to solve the rolling process instead of FEM

- Two-step solution:
 - 1. Double stages FEM
 - 2. Polynomial Meta-model and verification

Optimal Oval

MC elmarakbysteel

Double stages FEM

- Round-Oval and Oval-Round passes FEM
- Annealing process between the two passes to relief the residual stresses

More complicated but more accurate

••••••••••••••••••••

Challenges

Optimal Oval

Polynomial Meta-model

- Design of Experiment
- Automation of Rolling FEM
- Data analysis and regression
- Rolling meta-model equations
- Optimization result

Optimal Oval

Polynomial Meta-model

- Full Factorial
- Three factors , 4,4,6 Levels
- **Design of Experiment** > 96 Total runs
- Automation of Rolling FEM
- Data analysis and regression
- Rolling meta-model equations
- Optimization result

Input Round Diameter	Oval Depth	Oval Radius			
22	4.5	25			
22.5	5	26.5			
23	5.25	28			
23.5	5.5	30			
-	-	33			
-	-	36			

ME elmarakby steel

Optimal Oval

Polynomial Meta-model

- Design of Experiment
- Automation of Rolling FEM
- Data analysis and regression
- Rolling meta-model equility
- Optimization result

Extract Output minite("1272528-87")

Python Code

Optimal Oval

Polynomial Meta-model

- Design of Experiment
- Automation of Rolling FEM
- Data analysis and regression
- Rolling meta-model equation
- Optimization result

Python CodeExtract Output

			ST15				Gap					ST16		Reduction	Torque
28.28	12.42	2.28	29.00%	6.24	7.5	8.5	2	222.16	16.30	17.02	0.95	17.62%	3.42	41.51%	9.66
27.70	12.92	2.14	26.23%	5.39	7.5	8.5	2	229.11	17.09	17.02	0.99	18.23%	3.67	39.68%	9.06
28.79	11.93	2.41	30.88%	6.69	7.5	8.5	2	215.17	15.69	17.01	0.91	18.03%	3.36	43.35%	10.04
28.18	12.42	2.27	28.04%	5.86	7.5	8.5	2	223.69	16.43	17.02	0.95	18.16%	3.54	41.11%	9.40
27.61	12.92	2.14	25.35%	5.27	7.5	8.5	2	229.91	17.20	17.02	1.00	18.91%	3.85	39.47%	9.12
28.68	11.93	2.41	29.94%	6.40	7.5	8.5	2	216.80	15.80	17.02	0.92	18.52%	3.49	42.92%	9.89
28.10	12.42	2.26	27.19%	5.61	7.5	8.5	2	224.94	16.56	17.02	0.96	18.66%	3.69	40.78%	9.30
27.57	12.92	2.13	24.58%	5.17	7.5	8.5	2	230.61	17.33	17.02	1.01	19.49%	3.92	39.28%	9.09
29.93	10.93	2.74	34.70%	7.81	7.5	8.5	2	199.77	14.45	17.02	0.84	19.46%	3.33	47.40%	11.14
28.59	11.93	2.40	28.91%	6.19	7.5	8.5	2	218.68	15.94	17.02	0.93	19.01%	3.63	42.42%	9.82
28.02	12.42	2.26	26.26%	5.65	7.5	8.5	2	226.16	16.69	17.02	0.97	19.25%	3.82	40.45%	9.47
27.51	12.92	2.13	23.69%	5.01	7.5	8.5	2	231.32	17.45	17.02	1.01	20.19%	4.13	39.10%	9.15
29.76	10.93	2.72	33.18%	7.53	7.5	8.5	2	202.74	14.66	17.02	0.85	20.11%	3.42	46.62%	10.94
28.48	11.92	2.39	27.68%	6.12	7.5	8.5	2	220.71	16.11	17.02	0.94	19.65%	3.78	41.89%	9.90
27.95	12.42	2.25	25.07%	5.41	7.5	8.5	2	227.49	16.86	17.02	0.98	20.07%	4.03	40.11%	9.44
27.46	12.92	2.12	22.66%	4.77	7.5	8.5	2	232.05	17.60	17.02	1.02	21.00%	4.24	38.90%	9.01
29.62	10.93	2.71	32.00%	7.28	7.5	8.5	2	205.16	14.82	17.02	0.86	20.56%	3.57	45.98%	10.85
28.42	11.92	2.38	26.65%	5.92	7.5	8.5	2	222.27	16.25	17.02	0.94	20.22%	3.97	41.48%	9.89
27.89	12.42	2.25	24.19%	5.23	7.5	8.5	2	228.42	16.99	17.02	0.99	20.67%	4.15	39.86%	9.38
29.22	12.43	2.35	31.12%	6.47	7.5	8.5	2	224.15	16.45	17.02	0.96	18.08%	3.59	43.58%	10.06
28.60	12.92	2.21	28.28%	5.79	7.5	8.5	2	230.67	17.29	17.02	1.00	19.04%	3.85	41.94%	9.64
29.74	11.93	2.49	32.95%	7.05	7.5	8.5	2	217.23	15.80	17.02	0.92	18.45%	3.49	45.32%	10.54
29.10	12.42	2.34	30.06%	6.35	7.5	8.5	2	225.79	16.63	17.02	0.97	18.73%	3.69	43.16%	10.04
28.52	12.92	2.21	27.30%	5.73	7.5	8.5	2	231.49	17.44	17.02	1.01	19.85%	3.97	41.73%	9.70
29.63	11.93	2.48	31.99%	6.87	7.5	8.5	2	219.01	15.95	17.02	0.93	18.94%	3.61	44.87%	10.48
28.99	12.43	2.33	29.16%	6.12	7.5	8.5	2	227.01	16.75	17.02	0.97	19.34%	3.87	42.86%	9.99
28.45	12.92	2.20	26.44%	5.55	7.5	8.5	2	232.12	17.58	17.02	1.02	20.57%	4.07	41.57%	9.62
30.94	10.93	2.83	36.70%	8.24	7.5	8.5	2	201.60	14.49	17.02	0.84	19.83%	3.43	49.25%	11.67
29.49	11.93	2.47	30.84%	6.69	7.5	8.5	2	220.89	16.11	17.02	0.94	19.60%	3.76	44.40%	10.45

Challenges

Optimal Oval

Polynomial Meta-model

- Design of Experiment
- Automation of Rolling FEM
- Data analysis and regression
- Rolling meta-model equations
- Optimization result

Optimal Oval

Polynomial Meta-model

- Design of Experiment
- Automation of Rolling FEM
- Data analysis and regression
- Rolling meta-model equations
- Optimization result

Optimal Oval

Polynomial Meta-model

- Design of Experiment
- Automation of Rolling FEM
- Data analysis and regression
- Rolling meta-model equations
- Optimization result

6 equations for Two passes

Optimal Oval

Polynomial Meta-model

- Design of Experiment
- Automation of Rolling FEM
- Data analysis and regression
- Rolling meta-model equations
- Optimization result

Searching in meta-model equations reached optimal oval dimensions

Maximum Reduction

Optimal Oval

Verification of the Optimization result

Overall General Optimization Method

ME elmarakbysteel

Applications for this Study

Improve the roll pass design for the existing rolling mill plants

- Minimize the rolling torque and energy consumption
- Or Maximize area reduction ratio
 - To produce smaller products from the same production line

To produce the same products from larger billet size

• Production improvement by 20%

• Rolling from 150x150 billet

instead of 130x130

Without adding any rolling stands Without upgrading the existing equipment Without reducing the production capacity

Thank you

